Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38446299

RESUMO

A convenient synthesis of a novel 1,3,4-oxadiazole derivative, specifically known as, 2-(5-methylthiophen-2-yl)-5-(pyridin-3-yl)-1,3,4-oxadiazole (MTPO), is reported along with a comprehensive evaluation of its ability to inhibit the corrosion of mild steel (MS) in a 1 N HCl environment using weight loss, EIS, PDP, SEM, EDX, and UV-Vis spectroscopy. The investigated inhibitor expressed excellent inhibition efficiency (99.05% at 500 ppm, 298 K) with a mixed-type inhibitory mechanism as demonstrated by the PDP technique. Furthermore, MTPO followed Langmuir adsorption isotherm, which provides insights into the adsorption phenomena, demonstrating that it exhibits superior adsorption behavior on the MS surface compared. In silico investigations, using DFT computation and MD simulation complements the experimental outcomes revealing strong adsorbing attributes of the MTPO hybrid with the ω - and ω + values of 8.8882 eV and 4.4787 eV, respectively. In addition, the radial distribution function also addressed the chemisorption behavior of MTPO. This article also takes into consideration the various ways in which the inhibitor interacts with the mild steel, offering potential insights for developing strategies to mitigate metal dissolution in acidic environments.

2.
Chemosphere ; 352: 141369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342150

RESUMO

The release of radionuclides, including Cesium-137 (137Cs), Strontium-90 (90Sr), Uranium-238 (238U), Plutonium-239 (239Pu), Iodine-131 (131I), etc., from nuclear contamination presents profound threats to both the environment and human health. Traditional remediation methods, reliant on physical and chemical interventions, often prove economically burdensome and logistically unfeasible for large-scale restoration efforts. In response to these challenges, bioremediation has emerged as a remarkably efficient, environmentally sustainable, and cost-effective solution. This innovative approach harnesses the power of microorganisms, plants, and biological agents to transmute radioactive materials into less hazardous forms. For instance, consider the remarkable capability demonstrated by Fontinalis antipyretica, a water moss, which can accumulate uranium at levels as high as 4979 mg/kg, significantly exceeding concentrations found in the surrounding water. This review takes an extensive dive into the world of bioremediation for nuclear contaminant removal, exploring sources of radionuclides, the ingenious resistance mechanisms employed by plants against these harmful elements, and the fascinating dynamics of biological adsorption efficiency. It also addresses limitations and challenges, emphasizing the need for further research and implementation to expedite restoration and mitigate nuclear pollution's adverse effects.


Assuntos
Radioisótopos de Césio , Plantas , Humanos , Biodegradação Ambiental , Radioisótopos de Césio/análise , Plantas/química , Radioisótopos do Iodo , Água
3.
Environ Res ; 242: 117640, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007078

RESUMO

Industries today place a high premium on environmentally friendly supplies that may effectively inhibit metal dissolution at a reasonable cost. Hence, in this paper, we assessed the corrosion inhibition effectiveness of the Thiazole derivative namely, 2, 2-Dithio Bisbenzothiazole (DBBT) against mild steel (MS) corrosion in 1 M HCl. Several experimental approaches, including gravimetric analysis, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and surface exploration using scanning electron/atomic force microscopy (SEM/AFM) and contact angle (CA), were utilized to conduct the measurements. In 1 M HCl corrosive medium at 298 K in the subsistence of 800 ppm of DBBT, this experiment indicated DBBT as an environment-friendly and sustainable corrosion inhibitor (CI) for MS, demonstrating an inhibition efficiency (IE %) of 97.71%. To deliver a deeper knowledge of the mechanism behind inhibitive behavior, the calculated thermodynamic and activation characteristics were applied. The calculated Gibbs free energy values indicated that the CI interacted physically and chemically with the MS surface, validating physio-chemical adsorption. The findings of the EIS research revealed that an upsurge in the doses of the CI is escorted by an upsurge in polarization resistance (Rp) from (88.05 → 504.04) Ωcm2, and a diminution in double layer capacitance (Cdl) from (97.46 → 46.33) µFcm-2 at (50 → 800) ppm respectively, affirming the inhibitive potential of DBBT. Additionally, the greatest displacement in Ecorr value being 76.13 mV < 85 mV, indicating that DBBT act as a mixed-form CI. To study the further impacts of DBBT on the inhibition capabilities of the compound under investigation, density functional theory (DFT) and molecular dynamics (MD) simulation were employed. Chemical and electrochemical approaches are in agreement with the computational analysis indicating DBBT is the most efficient CI.


Assuntos
Elétrons , Aço , Corrosão , Adsorção , Concentração de Íons de Hidrogênio
4.
Chemosphere ; 346: 140608, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925026

RESUMO

The rapid global expansion of industrialization has resulted in the discharge of a diverse range of hazardous contaminants into the ecosystem, leading to extensive environmental contamination and posing a pressing ecological concern. In this context, activated carbon (AC) has emerged as a highly promising adsorbent, offering significant advantages over conventional forms. For instance, AC has demonstrated remarkable adsorption capabilities, as evidenced by the successful removal of atrazine and ibuprofen using KOH and KOH-CO2-activated char, achieving impressive adsorption rates of 90% and 95%, respectively, at an initial dosage of 10 mg L-1. Moreover, AC can effectively adsorb aromatic compounds through π-π stacking interactions. The aromatic rings in organic molecules can align and interact with the carbon atoms in AC's structure, leading to effective adsorption. In this review, by employing a systematic analysis of recent research findings (majorly from 2015 to 2023), an in-depth exploration of AC's evolution and its wide-ranging applications in adsorbing and remediating emerging pollutants, including dyes, organic contaminants, and hazardous gases and mitigating the adverse impacts of such emerging pollutants on ecosystems have been discussed. It serves as a valuable resource for researchers, professionals, and policymakers involved in environmental remediation and pollution control, facilitating the development of sustainable and effective strategies for mitigating the global impact of emerging pollutants.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Poluentes Ambientais/química , Ecossistema , Carvão Vegetal , Poluição Ambiental , Adsorção , Poluentes Químicos da Água/química
5.
Drug Metab Pers Ther ; 38(3): 211-226, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708954

RESUMO

INTRODUCTION: Medicinal plants and herbs are the most important part of the Ayurveda. The term Rasayana in Charaka Samhita confers long life, youthfulness, strong body, freedom from diseases and the plants mentioned in Rsayana possess antiaging property. Aging is the collective term used for the complex detrimental physiological changes that reduce the functional ability of the cell. Oxidative stress, telomeres shortening, inflammation, and mitochondrial dysfunction are the main factors that regulate the aging process. Chronological aging is an irreversible process but the factors causing biological aging can be controlled. Ayurvedic herbs are better for the management of age-related problems. There are several natural bioactive agents present in plants that can delay the aging process in humans. They trigger actions like enhancing gene longevity and telomerase activity, ROS scavenging furthermore regeneration of tissues. CONTENT: The plants mentioned in the Rasayana of Ayurveda have antiaging potential and can be used to solve modern problems related to aging. Some Ayurvedic plants and their antiaging potential has explained in this review. The main causes of aging, medicinal plants and their use as potential antiaging mediator are covered in this study. SUMMARY: The process of aging is still an enigma. It is a complex, irretrievable, dynamic process that involves a number of factors and is subject to a number of environmental and genetic influences. Rasayana aspect has not been much investigated in clinical trials. Aging is considered to result from free radical damage. According to Charaka, Rasayana drugs open the partially or fully blocked channels. Many Rasayanas show free radical scavenging activity and has the potential to mitigate the effects of aging. It gives an overview of the significance of Ayurvedic medicinal plants as a source of inspiration and the use of these plants as remedies for antiaging. OUTLOOK: This study briefly outlooks the causes of aging and how medicinal plants can be used to reverse the aging process. In this study, we discussed the antiaging potential and mechanistic roles of Ayurvedic herbs. These herbs have the properties to slow down the natural process of aging and can successfully manage common age-related problems.


Assuntos
Envelhecimento , Estresse Oxidativo , Humanos
6.
Environ Res ; 238(Pt 2): 117171, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734578

RESUMO

Layered double hydroxides (LDHs) are well-known and important class of hydrotalcite-type anionic clays (HTs) materials that are cost-effective with additional advantages of facile synthesis, composition, tenability, and reusability. These convincing characteristics are liable for their applications in various fields related to energy, environment, catalysis, biomedical, and biotechnology. HTs/LDHs are generally synthesized from low cost abundantly available chemical precursors through the aqueous synthetic pathways under mild reaction conditions. These materials can be termed green materials based on their non-toxic nature, availability of precursors, facile and low-cost production using aqueous medium conditions with less hazardous effluents. Diverse and fascinating characteristics have been attributed to HTs/LDHs like anion exchange ability, surface basicity, biocompatibility, controlled release of the anion specific area, porosity, easy surface modification, and pH dependent biodegradability. Hence, HTs/LDHs and their modified and/or functionalized nanohybrids/nanocomposites are reported as the potential drug delivery carriers with a capability to stabilize the susceptible bioactive molecules, may enhance the solubility of poorly soluble drugs along with controlled drug/bioactive molecule release and delivery. These clay and bioactive hybrid materials have good biocompatibility, less cytotoxicity, and better site-targeting with improved cellular uptake than that of free parent biomolecules. These lamellar solids of micro/nanostructure are compatible, host-guest materials and able to fabricate with drugs/cosmeceutical/bio- or synthetic polymers without any change in their molecular structure and reactivity along with improvement in their stabilities. Other important features are facile synthesis, basicity, high stability with easy storage, and efficient administration with low bio-toxicity. This study enlightens the applications of HTs/LDHs along with their hybrids/composites in the field of drug/cosmeceutical/gene delivery systems of natural/synthetic biomolecules.


Assuntos
Cosmecêuticos , Nanocompostos , Medicamentos Sintéticos , Hidróxidos/química , Água
7.
Environ Res ; 234: 116555, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419199

RESUMO

An easy synthesis of two 1,3,4-oxadiazole derivatives, namely, 2-phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazole (POX) and 2-(4-methoxyphenyl)-5-(pyridin-3-yl)-1,3,4-oxadiazole (4-PMOX), and their corrosion-inhibition efficacy against mild steel corrosion in 1 N HCl, is evaluated using weight loss from 303 to 323 K, Electrochemical Impedance Spectroscopy (EIS), Potentiodynamic Polarization (PDP), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), UV-Vis spectroscopy, along with theoretical evaluation. Both POX and 4-PMOX exhibit excellent inhibition efficiency, with values reaching 97.83% and 98% at 500 ppm, respectively. The PDP analysis reveals that both derivatives act as mixed-type inhibitors. The Langmuir adsorption isotherm provides insights into the adsorption phenomena, demonstrating that 4-PMOX exhibits superior adsorption behavior on the mild steel surface compared to POX. This finding is further supported by SEM, DFT, RDF, and MSD analyses. Quantum mechanical parameters, including EHOMO, ELUMO, dipole moment (µ), energy gap (ΔE), etc., are in good agreement with the effectiveness of inhibition performance revealing ΔE values of 3.10 and 2.75 for POX and 4-PMOX, respectively. The results obtained from this study hold significant implications for researchers aiming to design more efficient organic inhibitors to combat metal corrosion.


Assuntos
Oxidiazóis , Aço , Aço/química , Corrosão , Piridinas
8.
J Mol Graph Model ; 124: 108536, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37300949

RESUMO

Toxicity has been a significant concern for many materials used in the production of solar cells and generally conflicts with its efficacy. Therefore, it is crucial to develop alternative, non-toxic materials to improve the sustainability and safety of solar cell technology. In recent years, computational methods such as Conceptual density functional theory (CDFT) have been increasingly used to study the electronic structure and optical properties of toxic molecules such as dyes, with the goal of designing and modifying these molecules to enhance solar cell efficiency and reduce toxicity. By applying CDFT-based chemical reactivity parameters and electronic structure rules, researchers can gain valuable insights into the performance of solar cells and optimize their design accordingly. In silico studies have been used to screen and design non-toxic dye molecules, which can improve the sustainability and safety of solar cell technology. This review article discusses the applications of CDFT in the analysis of toxic dye molecules for use in solar cells. This review also highlights the importance of using alternative, non-toxic materials in the production of solar cells. The review also discusses the limitations of CDFT and in silico studies and their potential for future research. Finally, the article concludes by emphasizing the potential of in silico/DFT investigations for accelerating the discovery of new and efficient dye molecules for enhancing solar cells' efficiency.


Assuntos
Corantes , Energia Solar , Modelos Moleculares , Corantes/química
9.
Front Physiol ; 14: 1099806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179823

RESUMO

Pesticide residues have been reported in hive-stored products for long periods. Larvae of honey bees experience oral or contact exposure to these products during their normal growth and development inside the cells. We analyzed various toxicological, morphogenic, and immunological effects of residue-based concentrations of two fungicides, captan and difenoconazole, on the larvae of worker honey bees, Apis mellifera. Selected concentrations (0.08, 0.4, 2, 10, and 50 ppm) of both fungicides were applied topically at a volume of 1 µL/larva/cell as single and multiple exposures. Our results revealed a continuous, concentration-dependent decrease in brood survival after 24 h of treatment to the capping and emergence stages. Compared to larvae with a single exposure, the multiply exposed youngest larvae were most sensitive to fungicidal toxicity. The larvae that survived higher concentrations, especially multiple exposures, showed several morphological defects at the adult stage. Moreover, difenoconazole-treated larvae showed a significantly decreased number of granulocytes after 1 h of treatment followed by an increase after 24 h of treatment. Thus, fungicidal contamination poses a great risk as the tested concentrations showed adverse effects on the survival, morphology, and immunity of larval honey bees.

10.
Drug Metab Pers Ther ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37254529

RESUMO

INTRODUCTION: Medicinal plants and herbs are the most important part of the Ayurveda. The term Rasayana in Charaka Samhita confers long life, youthfulness, strong body, freedom from diseases and the plants mentioned in Rsayana possess antiaging property. Aging is the collective term used for the complex detrimental physiological changes that reduce the functional ability of the cell. Oxidative stress, telomeres shortening, inflammation, and mitochondrial dysfunction are the main factors that regulate the aging process. Chronological aging is an irreversible process but the factors causing biological aging can be controlled. Ayurvedic herbs are better for the management of age-related problems. There are several natural bioactive agents present in plants that can delay the aging process in humans. They trigger actions like enhancing gene longevity and telomerase activity, ROS scavenging furthermore regeneration of tissues. CONTENT: The plants mentioned in the Rasayana of Ayurveda have antiaging potential and can be used to solve modern problems related to aging. Some Ayurvedic plants and their antiaging potential has explained in this review. The main causes of aging, medicinal plants and their use as potential antiaging mediator are covered in this study. SUMMARY: The process of aging is still an enigma. It is a complex, irretrievable, dynamic process that involves a number of factors and is subject to a number of environmental and genetic influences. Rasayana aspect has not been much investigated in clinical trials. Aging is considered to result from free radical damage. According to Charaka, Rasayana drugs open the partially or fully blocked channels. Many Rasayanas show free radical scavenging activity and has the potential to mitigate the effects of aging. It gives an overview of the significance of Ayurvedic medicinal plants as a source of inspiration and the use of these plants as remedies for antiaging. OUTLOOK: This study briefly outlooks the causes of aging and how medicinal plants can be used to reverse the aging process. In this study, we discussed the antiaging potential and mechanistic roles of Ayurvedic herbs. These herbs have the properties to slow down the natural process of aging and can successfully manage common age-related problems.

11.
Chemosphere ; 306: 135464, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35760140

RESUMO

Hydrotalcite-like anionic clays (HTs) also known as Layered double hydroxides (LDHs) have been developed as multifunctional materials in numerous applications related to catalysis, adsorption, and ion-exchange processes. These materials constitute an important class of ionic lamellar solid clays of Brucite-like structure which comprise of consecutive layers of divalent and trivalent metal cations with charge balancing anions and water molecules in interlayer space. These materials have received increasing attention in research due to their interesting properties namely layered structure, ease of preparation, flexible tunability, ability to intercalate different types of anions, electronic properties, high thermal stability, high biocompatibility, and easy biodegradation. Moreover, HTs/LDHs have unique tailorable and tuneable characteristics such as both acidic and basic sites, anion exchange capability, surface area, basal spacing, memory effect, and also exhibit high exchange capacities, which makes them versatile materials for a wide range of applications and extended their horizons to diverse areas of science and technology. This study enlightens the various rational researches related to the synthetic methods and features focusing on synthesis and/or fabrication with other hybrids and their applications. The diverse applications (namely catalyst, adsorbent to toxic chemicals, agrochemicals management, non-toxic flame retardants, and recycling of plastics) of these multifunctional materials related to a clean and sustainable environment were also summarized.


Assuntos
Hidróxido de Alumínio , Hidróxido de Magnésio , Hidróxido de Alumínio/química , Argila , Hidróxidos/química , Hidróxido de Magnésio/química
12.
Sci Total Environ ; 834: 155219, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421493

RESUMO

Environmental safety has become a significant issue for the safety of living species, humans, and the ecosystem as a consequence of the harmful and detrimental consequences of various pollutants such as pesticides, heavy metals, dyes, etc., emitted into the surroundings. To resolve this issue, various efforts, legal acts, scientific and technological perspectives have been embraced, but still remain a global concern. Furthermore, due to non-portability, complex detection, and inappropriate on-site recognition of sophisticated laboratory tools, the real-time analysis of these environmental contaminants has been limited. As a result of innovative nano bioconjugation and nanofabrication techniques, nanotechnology enables enhanced nanomaterials (NMs) based (bio)sensors demonstrating ultra-sensitivity and a short detection time in real-time analysis, as well as superior sensitivity, reliability, and selectivity have been developed. Several researchers have demonstrated the potent detection of pollutants such as Hg2+ ion by the usage of AgNP-MD in electronic and optoelectronic methods with a detection limit of 5-45 µM which is quite significant. Taking into consideration of such tremendous research, herein, the authors have highlighted 21st-century strategies towards NMs based biosensor technology for pollutants detection, including nano biosensors, enzyme-based biosensors, electrochemical-based biosensors, carbon-based biosensors and optical biosensors for on-site identification and detection of target analytes. This article will provide a brief overview of the significance of utilizing NMs-based biosensors for the detection of a diverse array of hazardous pollutants, and a thorough understanding of the detection processes of NMs-based biosensors, as well as the limit of quantification (LOQ) and limit of detection (LOD) values, rendering researchers to focus on the world's need for a sustainable earth.


Assuntos
Técnicas Biossensoriais , Poluentes Ambientais , Nanoestruturas , Técnicas Biossensoriais/métodos , Ecossistema , Humanos , Reprodutibilidade dos Testes
13.
Mini Rev Med Chem ; 20(18): 1838-1845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32348216

RESUMO

Coumarin belongs to a class of lactones that are fundamentally comprised of a benzene ring fused to an α-pyrone ring; these lactones are known as benzopyrones. Similarly, coumarin has a conjugated electron-rich framework and good charge-transport properties. Plants produce coumarin as a chemical response to protect themselves from predation. Coumarins are used in different products, such as cosmetics, additives, perfumes, aroma enhancers in various tobaccos and some alcoholic drinks, and they play a relevant role in natural products and in organic and medicinal chemistry. In addition, as candidate drugs, many coumarin compounds have strong pharmacological activity, low toxicity, high bioavailability and better curative effects and have been used to treat various types of diseases. Various endeavors were made to create coumarin-based anticoagulant, antimicrobial, antioxidant, anticancer, antidiabetic, antineurodegenerative, analgesic and anti-inflammatory agents. A class of chemical compounds called furocoumarins has phototoxic properties and is naturally synthesized via the fusion of coumarin to a furan ring in different plant species. Psoralens belong to the furocoumarin class and occur naturally in various plants, e.g., lemons, limes, and parsnips. Angelicin is an isomer of psoralens, and most furocoumarins, e.g., xanthotoxin, bergapten, and nodekenetin, are derivatives of psoralens or angelicin. The present work demonstrated that psoralen molecules exhibit anti-tumoral activity against breast cancer and influence different intracellular signals to maintain the high survival of breast cancer cells. Psoralens perform different functions, e.g., antagonize metabolic pathways, protease enzymes, and cell cycle progression and even interfere in the crosslinking between receptors and growth factor mitogenic signaling.


Assuntos
Ficusina/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Ficusina/química , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia
15.
3 Biotech ; 7(5): 346, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28955643

RESUMO

The insecticidal potential of cells and acid-precipitated biomolecules (APB) of Bacillus vallismortis (Roberts) (Bacillales: Bacillaceae) R2 was evaluated against polyphagous pest Spodoptera litura. The intact cells of isolate R2 and its APB preparation significantly increased larval mortality. Both cells and APB significantly delayed the development and reduced adult emergence of S. litura. The toxicity of isolate R2 was evident from the emergence of morphologically deformed adults with crumpled and underdeveloped wings. The nutritional physiology of larvae fed on APB-supplemented diet was also adversely affected resulting in significant reduction of relative growth and consumption rate as well as efficiency of conversion of ingested and digested food. Thus, the intact viable cells and APB of B. vallismortis R2 may serve as environmental-friendly alternatives to chemical insecticides.

16.
J Invertebr Pathol ; 127: 38-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25725116

RESUMO

Gut microbes contribute to the health of insects and perturbations in the composition or location of gut microbiota can lead to pathological states and host mortality. We explored the culturable bacterial community in the gut of Spodoptera litura (Fab.) larvae, which is a polyphagous pest. Bacterial isolates were identified as Microbacterium arborescens (SL6), Enterococcus casseliflavus (SL10) and Enterobacter cloacae (SL11) by using culture dependent technique based on 16S rRNA gene sequencing. Screening of these three isolates for insecticidal potential against the same host i.e. S. litura indicated the highest larval mortality in E. cloacae (73.33%). Further, we assessed the effect of E. cloacae (SL11) infection on growth and development of S. litura. A significant effect of E. cloacae was observed on various biological parameters viz. larval and pupal period, total development period and reproductive potential of S. litura. E. cloacae significantly influenced the immune response of S. litura. A marked decrease in total hemocyte count was observed in larvae infected with E. cloacae whereas lysozyme and phenoloxidase activity increased initially followed by a decline. The gut microbial diversity in larvae infected with E. cloacae differed from control larvae. The population of E. cloacae in the gut of infected larvae exceeded over the other two microbes and resulted in pathogenicity and death of S. litura larvae. This indicates that E. cloacae can have the potential to be used as a promising biological control agent.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Controle Biológico de Vetores/métodos , Spodoptera/microbiologia , Animais , Bactérias , Enterobacter cloacae , RNA Ribossômico 16S/genética
17.
Environ Entomol ; 42(2): 240-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23575013

RESUMO

Endophytic fungi, which live within host plant tissues without causing any visible symptom of disease, are important mediators of plant-herbivore interactions. These endophytes enhance resistance of host plant against insect herbivores mainly by productions of various alkaloid based defensive compounds in the plant tissue or through alterations of plant nutritional quality. Two endophytic fungi, i.e., Nigrospora sp. and Cladosporium sp., were isolated from Tinospora cordifolia (Thunb.) Miers, a traditional indian medicinal plant. Cauliflower (Brassica oleracea L.) plants were inoculated with these two endophytic fungi. The effect of endophyte infected and uninfected cauliflower plants were measured on the survival and development of Spodoptera litura (Fab.), a polyphagous pest. Endophyte infected cauliflower plants showed resistance to S. litura in the form of significant increase in larval and pupal mortality in both the fungi. Inhibitory effects of endophytic fungi also were observed on adult emergence, longevity, reproductive potential, as well as hatchability of eggs. Thus, it is concluded that antibiosis to S. litura could be imparted by artificial inoculation of endophytes and this could be used to develop alternative ecologically safe control strategies.


Assuntos
Ascomicetos/fisiologia , Brassica/microbiologia , Brassica/fisiologia , Cladosporium/fisiologia , Endófitos/fisiologia , Spodoptera/fisiologia , Simbiose , Animais , Antibiose , Agentes de Controle Biológico , Brassica/crescimento & desenvolvimento , Feminino , Índia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Spodoptera/crescimento & desenvolvimento , Tinospora/microbiologia
18.
Appl Biochem Biotechnol ; 168(5): 991-1002, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22945561

RESUMO

Keeping in view the vast potential of endophytic fungi to produce bioactive molecules, this study aimed at isolating and screening endophytes for the production of acetylcholinesterase inhibitors. Fifty-four endophytic fungi were isolated from Ricinus communis and screened for their AChE inhibitory activity using Ellman's colorimetric assay method. Six isolates were found to possess AChE inhibitory activity with maximum inhibition of 78 % being evinced by culture Cas1 which was identified to be Alternaria sp. on the basis of molecular as well as microscopic methods. Optimization of inhibitor production was carried out using one factor at a time approach. Maximum production of inhibitor was obtained on potato dextrose broth after 10 days incubation. The IC(50) of the chloroform extract was observed to be 40 µg/ml. The extract was purified on silica gel and eluted stepwise with a gradient of chloroform/methanol. The insecticidal potential of the extract was evaluated by feeding the larvae of Spodoptera litura on diet containing varying concentrations of the extract. It was observed that with increase in the concentration of the extract, mortality of the larvae increased. The culture has the potential of being exploited in medicine as well as a biocontrol agent.


Assuntos
Alternaria , Inibidores da Colinesterase , Endófitos/química , Inseticidas , Acetilcolinesterase/química , Alternaria/química , Alternaria/patogenicidade , Animais , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Endófitos/isolamento & purificação , Fungos/química , Inseticidas/química , Inseticidas/isolamento & purificação , Ricinus/química , Spodoptera/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...